Solutions - Midterm Exam

(February 14th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (22 PTS)

a) Complete the following table. The decimal numbers are unsigned: (3 pts.)

Decimal	BCD	Binary	Reflective Gray Code
50	01010000	110010	101011
128	000100101000	10000000	11000000

b) Complete the following table. The decimal numbers are signed. Use the fewest number of bits in each case: (15 pts.)

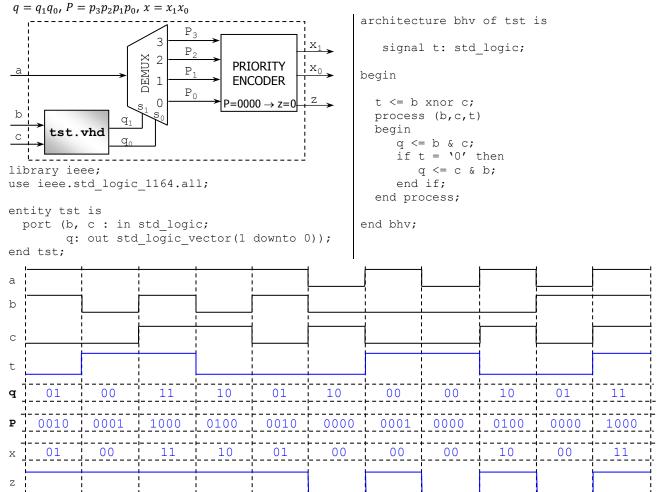
REPRESENTATION				
Decimal	Sign-and-magnitude	1's complement	2's complement	
-17	110001	101110	101111	
-16	1 10000	101111	10000	
-32	1100000	1011111	100000	
-1	11	10	1111	
41	0101001	0101001	0101001	
0	10	1111	0	

c) Convert the following decimal numbers to their 2's complement representations. (4 pts)

```
-17.25 \checkmark 16.75 +17.25 = 010001.01 <math>\Rightarrow -17.25 = 101110.11 +16.75 = 010000.11
```

PROBLEM 2 (15 PTS)

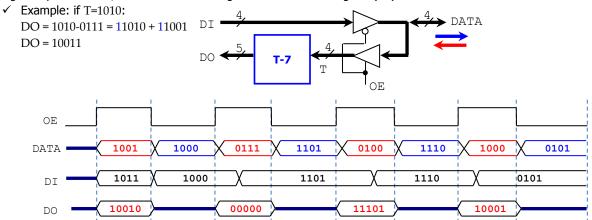
Complete the timing diagram of the following circuit. The VHDL code (tst.vhd) corresponds to the shaded circuit.



1

PROBLEM 3 (12 PTS)

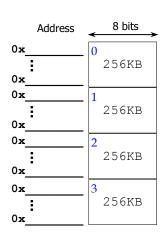
• Complete the timing diagram (signals *DO* and *DATA*) of the following circuit. The circuit in the blue box computes the signed operation T-7, with the result having 5 bits. T is a 4-bit signed (2C) number.



PROBLEM 4 (10 PTS)

- A microprocessor has a memory space of 1 MB. Each memory address occupies one byte. $1KB = 2^{10}$ bytes, $1MB = 2^{20}$ bytes, $1GB = 2^{30}$ bytes.
 - a) What is the address bus size (number of bits of the address) of the microprocessor? Size of memory space: $1 \text{ MB} = 2^{20}$ bytes. Thus, we require 20 bits to address the memory space.
 - b) What is the range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? (1 pt.) With 20 bits, the address range is 0x00000 to 0xFFFFFF.
 - c) The figure to the right shows four memory chips that are placed in the given positions:
 ✓ Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips. (8 pts)

•					Address	_	8 bits
0000	0000	0000	0000	0000: 0001:	0x00000 0x00001	0	256KB
0011	 1111	1111	1111	1111:	0x3FFFF		
0100 0100	0000	0000	0000	0000: 0001:	0x40000 0x40001	1	256KB
0111	1111	1111	1111	1111:	0x7FFFF		
1000 1000	0000	0000	0000	0000:	0x80000 0x80001	2	256KB
1011	 1111	1111	1111	1111:	0xBFFFF		
1100 1100	0000	0000	0000	0000: 0001:	0xC0000 0xC0001	3	256KB
1111	1111	1111	1111	1111:	 0xFFFFF		200110



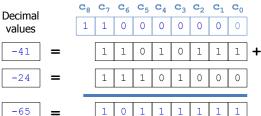
PROBLEM 5 (15 PTS)

a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit. (6 pts) \checkmark 37 - 41

2

b) The figure shows two 8-bit operands represented in 2's complement. Perform the 8-bit addition operation, i.e., complete all the carries and the summation bits. Also, indicate the corresponding decimal numbers for the 8-bit operands and the 8-bit result.

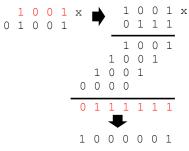
Does this 8-bit operation incur in overflow? Value of the overflow bit: $\frac{c_8 \oplus c_7 = 0}{c_8 = 1}$ Value of carry out bit: $\frac{c_8 \oplus c_7 = 0}{c_8 = 1}$



c) Perform binary multiplication of the following numbers that are represented in 2's complement arithmetic. (3 pts)

Yes

✓ 1001 x 01001



PROBLEM 6 (10 PTS)

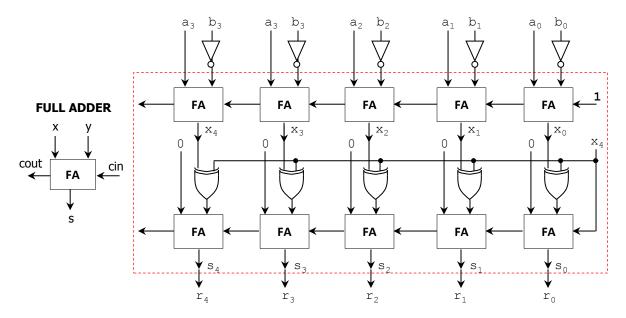
■ Sketch the circuit that computes |A - B|, where A, B are 4-bit <u>signed</u> numbers. For example, $A = 0101, B = 1101 \rightarrow |A - B| = |5 - (-3)| = 8$. You can only use full adders (or multi-bit adders) and logic gates. Your circuit must avoid overflow: design your circuit so that the result and intermediate operations have the proper number of bits.

 $A = a_3 a_2 a_1 a_0$, $B = b_3 b_2 b_1 b_0$

 $A, B \in [-8,7] \rightarrow A, B$ require 4 bits in 2C representation.

- \checkmark $X = A B \in [-15,15]$ requires 5 bits in 2C. Thus, we need to zero-extend A and B.
- \checkmark $|X| = |A B| \in [0,15]$ requires 5 bits in 2C. Thus, the second operation $0 \pm X$ only requires 5 bits.

 - $If x_4 = 0 \rightarrow X \ge 0 \rightarrow \text{we do } 0 + X.$
- \checkmark $R = |A B| \in [0,15]$ requires 5 bits in 2C. Note that the MSB is always 0.

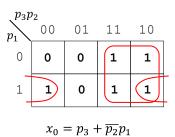


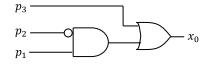
3

PROBLEM 7 (16 PTS)

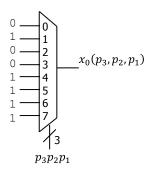
In a 4-to-2 priority encoder (like the one in Problem 2), it can be demonstrated that the output x₀ = p̄₃ p̄₂p₁ + p₃.
 ✓ Provide the simplified expression for x₀ and sketch this circuit using logic gates. (3 pts)

p ₃	p_2	p_1	x ₀
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1





✓ Implement x_0 using ONLY an 8-to-1 MUX. (3 pts).



✓ Implement x_0 using ONLY 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed) (10 pts).

$$\begin{split} x_0(p_3,p_2,p_1) &= p_3 + \overline{p_2}p_1 \\ x_0(p_3,p_2,p_1) &= \overline{p_3}x_0(0,p_2,p_1) + p_3x_0(1,p_2,p_1) = \overline{p_3}(\overline{p_2}p_1) + p_3(1) \\ x_0(p_3,p_2,p_1) &= \overline{p_3}g(p_2,p_1) + x_0(1) \\ g(p_2,p_1) &= \overline{p_2}g(0,p_1) + p_2g(1,p_1) = \overline{p_2}(p_1) + p_2(0) \end{split}$$

